
1922 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 11> NOVEMBER 1993

Single-Frequency Relative Q Measurements
Using Perturbation Theory

Baiqiang Tian and Wayne R. Tinga

Abstract— Traditionally, Q measurement requires a nonzero
frequeucy bandwidth or time period. Contrasted to this, the
principle of a new single-frequency relative Q measurement
method is developed. It is found that Q is dkectly or inversely
proportional to the normalized input resonant resistance if a
moderate perturbation condition is satisfied. Theoretical proof
and experimental verification of the single-frequency method’s
validlty are presented. Consequently, a relative Q, often used
in dielectric measurements, can be measured using a mnch
simpler measurement system. Moreover, error analysis shows
that, in making a relative Q measurement, the error iu the single-
frequency method is smaller than that in the traditional bandpass
method when using a reflectometer.

I. INTRODUCTION

Q -factor determination is one of the basic microwave

techniques for the characterization of a resonator and
extends to the determination of electromagnetic and

nonelectromagnetic properties of a material such as dielectric
constant, loss factor, moisture content and density.

Over the past fifty years, a great variety of Q measurement
methods were developed, but all fall into essentially two cate-
gories, namely, the bandpass method and the time decrement
method [1]. The former is based on a resonator’s response to
CW signals in the vicinity of its resonant frequency [1]. The
latter involves observing the resonator’s transient response to
the sudden application or removal of an exciting signal at

or near the resouant frequency. Consequently, these methods
require either the excitation of a measurement signal over
a frequency band or over a given time period, making it
impossible to measure Q at a single frequency. Therefore,
when the Q-factor of a single-frequency system needs to be
measured, a sweep oscillator must be added to the system (see,
for example, the method used in high-temperature microwave
dielectric measurements [2]), thus increasing system complex-
ity and cost and causing interference with the original system
frequency and system operation.

In this paper, based on the perturbation theory, we prove the
possibility of measuring Q at single frequency, which only
requires an input resistance measurement of a cavity at its
resonant frequency, while a moderate perturbation condition
is satisfied. Applying this principle, a new method for a
single-frequency relative Q measurement has been developed.
Experimental verification of the method and an error analysis
are also presented.
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Fig. 1. (a) Resonant cavity containing disturbances 1’1, V2 . V~, and the
coupling device. (b) The cavity equivalent circuit at resonance. VO isthe empty
cavity volume. VI, 1$ . . . V~ are relatively far from the coupling region.

II. THEORETICAL BASIS

A. Input Resonant Resistance and Q

It is well known that the resonant resistance Ron the cavity

side of the equivalent coupling plane (Fig. 1) is defined, for
magnetic coupling, as

and for electric coupling, as

R= (Jmq2 w
2P ‘G

(1)

(2)

where P is the power dissipated in the cavity, and 1 and V

are the equivalent current and the equivalent voltage on the
cavity side of the coupling device respectively. The integration
path for H encloses the path where the current I is defined.
Similarly, the integration limits, a and b, are the points between
which the equivalent voltage V is defined. We need to analyze
only one of the two coupling cases since the results of the other
can be obtained by the principle of duality. Here we choose
to analyze the magnetic coupling case.

By definition, the Q factor is

Q=ww

P
(3)

where w is the angular resonant frequency and W is the energy
stored in the cavity. Substituting for P from (3) into (l), the
resistance at resonance is represented by

R=
2WW

($c~.d~)2Q
(4)
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Transforming through the coupling device and normalizing

with respect to the characteristic impedance of the input trans-

mission line, 2., we obtain the normalized input resistance ~

looking into the cavity from the outside as

n2R 2n2wS
z=—=—

20 ZOQ
(5)

where n is the current transformer ratio of the coupling
mechanism and S is defined as the ratio of the stored energy in
the cavity to the square of the integrated magnetic field around
the coupling device, i.e., the square of the RF current in the
coupling device of the cavity, so that

Alternatively, Q can also be written as a function of ~

2n2wS
Q.—

ZOR

(6)

(7)

Up to this point, no approximations have been made. There-
fore, an absolute value of Q can be obtained by measuring

the input resistance ~ under the resonant condition provided

that 20, n, w, and S are known. However, this is realistic

only for some well-defined resonator geometries such as the
circularly cylindrical cavity, the rectangular cavity, and the
coaxial cavity, with coupling mechanisms that can be fully
analyzed to obtain the values for n and S.

The real significance of (7), however, is the fact that it
reveals how a Q can be measured without resorting to a band

of frequency or a given time increment. What may, practically,

be even more significant is that a relative value of Q can be
obtained with sufficient accuracy by simply measuring ~ even
without solving for n, S, and w if a moderate perturbation
condition is satisfied, as we will proceed to prove next.
Consequently, the relative Q measurement can be used in
practical single-frequency dielectrometers.

B. Perturbation Effect

In most microwave dielectric measurements, the variations

of the parameters of the dielectric, causing the perturbation,
are well within the range allowed by perturbation theory.
Therefore, the analysis of the relationship between Q and ~

under a perturbation condition is significant in this sense.
Equation (7) shows that, besides ~, the four quantities

Zo, n, W, and S would affect Q. Since 20 is a known constant
we only have to examine how n, w, and S vary when a
resonator is perturbed.

For a given field configuration in the coupling region, the
value of the transformer ratio n is decided by the geometric
structure of a coupling mechanism. In other words, n will not
vary as long as the field configuration in the neighborhood
of the coupling mechanism remains unchanged. Notice that
this is a weaker condition than demanded in the conventional
perturbation theory, where invariance of the fields throughout
the whole cavity is required except in the locally perturbed
region. If the coupling mechanism is situated far enough from
the disturbed field region, as is usual in practice, the above

perturbation condition is satisfied quite rigorously. Moreover,
when the dominant fields at the coupling port are different

from those in the perturbed region, the effect of the perturba-

tion on the coupled field will be still further reduced [3] and
hence can be assumed negligible. From this we conclude that
n would remain a constant as long as a moderate perturbation
condition is satisfied.

Consider now how the perturbation affects S. Perturbation
theory requires that, on introducing disturbances, the fields
may change considerably in magnitude but the field config-

urations or the patterns will not change appreciably except
in the region of the disturbances. Say that, as a result of the
disturbances, the existing field magnitude changes from Ho to

H = hHo (8)

where h is a simple scale factor. By (6) and (8), and noting
that the energy of W = (l/2)~ J H2 dv, we obtain

ph2 .k7: dVs= __ 2=s0
2h2 (JCHodI/)

(9)

where So is the S for the undisturbed resonator, and V = V..
It is evident that the parameter S is invariant under the

perturbation assumption. Now Q can be expressed as

( WO)+=%(l+%) ‘1”)Q=~&%w 1+~
where Co = 2n~SOw0/ZO is a constant for a resonator
satisfying the perturbation assumptions. The subscript O refers
to the quantities before perturbation.

In order to examine the perturbation effect on w, consider

that the field is disturbed and redistributed, thereby altering the
resonant frequency. The variation of the resonant frequency
can be represented by the well-known cavity perturbation
formula

Aw —
Wo —

./w [(~1 *DO ‘~0 *~1) + (~, *DO ‘no *B,)] dV

fo, Fo” (DO +~1) ‘~0* (BO +E,)] dV
(11)

where El, ~1, El and ~1 are the small incremental changes
in ~., Do, and ~. and Do due to the perturbation. The results
for many specific cases can be found in the literature [4]. Nev-
ertheless, it is this frequency shift that is the essential quantity
in the standard perturbation theory and in its applications.
Yet, from the point of view of the Q relation in (10), the
effect of the frequency shift is negligible because, in any valid
perturbation case, the frequency shift Aw/w is much smaller
than unity. For example, 270 of Aw/w may be considered to
be quite a large perturbation for a microwave cavity, but it
contributes a Q error of only 2?Z0according to (10). For this
reason, neglect of Aw/w has little impact on the Q value.
Consequently, the Q is very simply related to the normalized
input resistance of a resonating cavity by

(12)
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For the electric coupling case, by the principle of duality,
we obtain

Q = C.~ (13)

where C, is a new constant.
It should be pointed out that our use of an ideal transformer

model representing the coupling device in no way limits the

generality of the above conclusions.
Note that ~ is related to the absolute reflection coefficient

pq by

(14)

where the choice of the sign depends on whether the cav-
ity is overcoupled or undercoupled, respectively. Applying
(12)-(14), we can determine the relative Q-factor through

the measurement of just the reflection coefficient. Only if an
absolute value of Q needs to be found must a value for CO

be determined.

C. Detuning and Retuning

In perturbation applications, two cases are very common.
One is the detuning case, where a dielectric disturbance, VI as
in Fig. 1, causes a resonant frequency shift. The other is the
retuning case, where, after a first disturbance, the resonant
frequency is retuned via a second disturbance, say Vz, to
the original unperturbed resonator frequency. Therefore, the
retuning results in true single frequency operation since a
fixed frequency has been maintained. To show that the relation
between Q and R still holds for the retuning case, we consider
the following argument.

For the detuning case, the frequency shift can be derived
from (11) as

Aw _ & (El “D; ‘~; *~1) dV— (15)
Wo VI— 4W13

where

is the energy in the unperturbed cavity.
For the retuning case, suppose we slightly change the

volume of the cavity by an appropriate second disturbance
of volume Vz to pull the disturbed resonant frequency back
to its undisturbed value, This is usually done by adjusting a
short circuit plunger or a tuning stub. However, a dielectric
property or magnetic permeability variation is also allowed
as the secondary disturbance in lieu of a physical volume
variation. According to perturbation theory, the frequency shift
due to a volume variation is given by [4]

Aw J’V2 (m*Do - m*Do)— =
4WI)

(16)
Wo V2

Maintaining the resonant frequency constant requires

Aw Aw—_——
Wo VI Wl) ~2

(17)

Substituting (15) and (16) into (17), and assuming W. con-
stant, we obtain

/( )
ljlx~;-~:x~l dV+

VI

/( )m;*Do–m;*~o dV=O (18)
V2

which shows that, to maintain a fixed resonant frequency,
the addition of the energy variations caused by the two
disturbances must be zero. In other words, the energy in the
twice-disturbed cavity is equal to that of the undisturbed cav-
ity. Therefore, not only does the frequency remain unchanged
but so does the factor S since the energy W remains invariant,
as does the coupling loop current given by $CH * d~, on
the assumption that the coupling region is far away from the
disturbances. Consequently, the Q measured in the retuned

case will be more accurate than that measured in the detuned

case.
In summary, it is found that, depending on whether electric

or magnetic coupling is used, Q is directly or inversely
proportional to ~ once the perturbation conditions are satisfied.
Therefore, the relative Q can be obtained from a reflection
measurement at a single frequency. To achieve this, the critical

stipulation is that the field configuration in the coupling region
remain undisturbed even though the field amplitudes change.
In addition, maintaining a fixed frequency by introducing a
secondary disturbance further improves the accuracy.

III. EXPERIMENTALVERIFICATION

In this section, the conclusions based on the theoretical
analysis in the previous section are verified experimentally.
In order to ensure greater credibility, not one but two cavities,
different in structure and Q range, have been employed in the
experiment for the verification. One is a circularly cylindrical
TM013 mode cavity and the other is a re-entrant coaxial cavity.
The experiments were conducted in S-band. Comparison data
for the Q factor were obtained from the traditional band-
pass method.

A typical swept-frequency reflectometer is used for the
bandpass Q measurement, as shown in Fig. 2. Using this
method, we can obtain the cavity Q, QT, by

QT = (1 +P)QL (19)

where ~ is the coupling coefficient. The loaded Q, QL, is
given by

QL. ~& (20)

where k depends on the power level at which Aj is measured.
For example, if the 3-dB power level is chosen, k = 1.

On the other hand, the cavity Q obtained through the
single-frequency method is designated as QP, and is given by
(12), i.e.,

Qp. ~ (21)

with the constant Co determined by an independent measure-
ment using the bandpass method mentioned. R is obtained
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Fig. 3. Test cavity arrangements. a) Circularly cylindrical cavity. A small
drop of water sliding into dry salt greatly increases the loss factor resulting in
a significant Q drop, while the resonant frequency remains nearly constant.
b) Re-entrant coaxial cavity. Insertion of O.1–N NaCl solution (VI)into the
cavity in the high E–field gap region changes both Q and resonant frequency.
The metal tuning stub (V2 ) is used to pull the resonant frequency back to the
unperturbed value.

through (13) by an absolute reflection coefficient measurement
at the resonant frequency. Novel software for the HP8756

scalar network analyzer [2] collected the data of the pertinent
resonant curve including Aj, ~. and II’1, which simultane-

ously contain the information for both the bandpass and the
single-frequency method, ensuring identical electromagnetic
conditions for both tests. Therefore, any source frequency
and power instability will not affect the relative comparison
between these two different methods, making the comparison
more direct and reliable.

A. Cavity Description

The geometrical structures of the two cavities are shown in
Fig. 3. Two things about the construction of the cavities should
be mentioned. First, they both have a hole for introducing
the disturbances, mostly lossy materials, by which the Q
variation can be realized without changing cavity geometry.
Second, the coupling mechanisms are located far from the
disturbing sources and both are loop-coupled to the H-field
to achieve as high an isolation as possible between the cou-
pling mechanisms and the disturbances placed in a maximum
E-field. Two different procedures of introducing the distur-
bances were used for the cylindrical cavity and the re-entrant
coaxial cavity. The first was used to confirm the validity of the
single-frequency method and the second was used to confirm
the validity of the method as well as to compare the results of
the detuned and the retuned cases.

1925

TABLEI
Q COMPARISONBETWEENTHEBANDPASSMETHODANDTHE SINGLE

FREQUENCYMETHOD (CIRCULAR CYLINDRICAL CAVITY)

F(GHz) Irl
Q FACTOR COUPLING

BANDPASS SINGLE FREQ. DIFFERENCE(%) coNDITloN

2.9550 0.469 7129 7122 0.1
2.9550 0.425 6408 6374 0.5
2.9549 0.348 5414 5322 1.7 OVER

2.9549 0.332 5247 5136 2.1 COUPLED

2.9S49 0.297 4880 4751 2.6
2.9549 0.293 4829 4706 2.6
2.9549 0.032 2850 2749 3.7

2.9450 0.177 1768 1770 0.1
2.9450 0.190 1712 1772 0.6
2.9450 0.227 1581 1594 0.8 UNDER

2.9449 0,3S2 1174 1213 3.3 COUPLED

2.9449 0.414 997 1048 5.2
2.9448 0.521 724 797 10.0
2.9447 0.S63 626 708 12.9
2.9447 0.684 398 476 19.6

B. Procedures

—.

I

Prior to the measurements, the constants Co of the cavities

were determined by the standard bandpass method in order to
allow us to present absolute Q value data. In this way, the data

can show not only the difference between the single-frequency
method and the standard method but also indicate the absolute
Q range covered.

1) Circularly Cylindrical Cavity: In order to verify (12),
we wish to keep the frequency shift and the field disturbance
as small as possible while the Q factor varies during the
introduction of the loss into the cavity. To achieve this, about
0.13 g of dry salt, NaCl, was placed in the glass tube that
had been inserted into the cavity and its resonant performance

was recorded. Subsequently, a very small drop of water was
added by letting it slide slowly along the inner surface of
the tube wall as illustrated in Fig. 3(a). On absorbing the

water, the loss of the salt increases dramatically but the
dielectric constant of the mixture does not change much.
This leads to a significant Q reduction with little variation
in resonant frequency and field configurations. During this
period, the Q measurements, using both the bandpass and
the single-frequency methods, were performed automatically
via the previously mentioned computer program. The results
are listed in Table I for two different coupling conditions. It
shows that the results for the single frequency Q measurement

method compare very favorably with those of the bandpass
method. It should be pointed out that the resonant data on
which the table is based were acquired semicontinuously, one
reading every 0,025 s., as the salt was absorbing the water. As
expected, the percentage difference between the two methods
increases as the disturbance, because of the dielectric sample,

becomes larger.
2) Re-entrant Coaxial Cavity: With this cavity, the valid-

ity of (12) was again confirmed but, in addition, dissimilarities
of the results under perturbation conditions after the manner
of the detuning and the retuning were revealed. The retuning
was provided by a metal tuning stub as shown in Fig. 3(b).
We inserted a O.1-N NaCl solution in a glass tube through
the cavity hole into the high E-field region in the gap.
Because of the high dielectric constant and the high loss
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TABLEII
Q COMPARISONBETWEENTHEBANDPASSMETHODAND THE SINGLE
FREOUENCYMETHODWITH FREERESONANTFREQUENCYSHIFTLE., -2

THE DETUNINGCASE (RE-ENTRANTCAVITY, UNDER CQUPLED) .

T
F(GHz) ~rl

2.4042 0.154
2.4028 0.199
2.4012 0.243
2.4003 0.267
2.3998 0.282
2.3983 0.324
2.3969 0.361
2.3958 0.387
2.3934 0.451

BANDPASS

1082
981
908
857
818
711
632
568
462

Q FACTOR
1

SINGLEFREQ. DIFFERENCE(% / -1

1110
1012
922
876
848
774
712
670
573

2.6
3.2
1.5
2.3
3.7
8.8
12.6
17.8

-12
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Return Loss (dB)
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TABLEIII
Q COMPARISONBETWEENTHE BANDPASSMETHODAND THE

Fig. 4. Relative Q error vs. cavity return loss using a simple reflectometer.SINGLE-FREQUENCYMETHODAT A FIXED RESONANTFREQUENCY,I E, THE
RETUNINGCASE (RE-ENTRANTCAVITY, UNDER COUPLED,f = 24046 GHz)

Q FACTOI

INGLE FREQ
IV. ERROR ANALYSISOF RELATIVEQ MEASUREMENTIrl

14NDPASS INFERENCE

5.9
5.1
7.3
5.4
7.9
8.3
8.8
9.5
10.2
9.5

In the foregoing, the perturbation theory for the single-
frequency Q measurement is proved to be valid theoretically
and experimentally within a certain error. This error is ana-
lyzed more fully in this section. From the Q expression of (7),

we can write the general form for the relative error in Q as

0.131
0.165
0.232
0.254
0.290
0.335
0.366
0.417
0.498
0.607

1129
1032
879
854
772
696
645
568
460
338

1195
1085
943
900
833
753
702
622
507
371

AQ AZO ARk+y+2!l _ _
Q=W z~–z

(22)
n

where AZo/ZO can be considered to be zero. AS/S, An/n
and Aw/w are negligible, as suggested in the previous pertur-
bation analysis. Therefore, when the relative variation of Q is
of interest, as is true in many practical cases, the only major
error source is the A~/~ term. This resonant input resistance
error is related to the reflection coefficient by

tangent of this sample, the Q factor as well as the resonant
frequency were altered significantly as the sample was being
inserted. During this insertion period, resonant data was again
obtained on a semicontinuous basis. To obtain the data for the
retuning case, we repeated the Q measurements and retuned

the cavity after each change in disturbance to its original
resonant frequency by adjusting the metal stub tuner. The Q,

the resonant frequency, and the reflection coefficient for the

detuning and the retuning cases are listed in Tables II and III,
respectively for comparison.

C. Discussion

It is clear that the Q values from the single-frequency
method agree well with those from the standard bandpass
method over a wide range of Q values. For example, the

difference is less than 3.7% for a Q range of 7000 to 3000
and less than 2070 for 1800 to 400. The discrepancy from the
standard bandpass method’s data increases with the increase
of the perturbation.

As more disturbance is introduced, the difference in the
measured Q values increases rapidly in the detuned case
whereas the difference remains relatively constant in the
retuned case. This confirms the prediction made in the previous
theoretical analysis that the Q measured in the retuned case
will be more accurate than that measured in the detuned case.
Retuning effectively increases the allowed perturbation range.
This is believed to result from the rebalancing of the cavity
energy by the retuning, which removes the effect of the energy

change on the parameter S.

(23)

becomes

Since

lrl = 10%

where RL is the return loss in dB, (23)

AZ l1711n10 .-,,
E“ 1O(I – pl) ‘(RL)

(24)

For a dual directional coupler of 30 dB directivity, the lower
and upper limits of RL are [5]

A(RL)- = 0.336–0.0025[RL12373 (25)

and

A(RL)+ = 0.354+ 0.00281RL12’223 (26)

respectively. Based on (24)–(26) the relative error of R vs.
RL is plotted in Fig. 4 for a 30-dB directivity coupler. For
comparison, the curve for a 40 dB directivity dual directional
coupler is presented in Fig. 4 also.

These curves demonstrate that the relative Q error is less
than +8% for a 30-dB directivity coupler and a minimum
return loss of 5 dB. If a 40-dB directivity coupler is used,
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however, a substantial accuracy improvement is achieved, with
the error remaining nearly constant over a large return loss

range. This contrasts with the error behavior of Q for the
typical bandpass method as revealed in a study done in [2],
in which they show a minimum error of +10% for the 30-dB
directivity case over only a narrow return loss range. The error
of the single-frequency Q measurement tends to decrease when
the cavity input impedance approaches a matching condition.
This is an obvious advantage for resonant systems operating

near their matched condition. Furthermore, the present method

eliminates the need for the resonant frequency ~. and the
3-dB bandwidth Afo measurements. Therefore, power and fre-
quency variations would have no direct effect on the measured
Q factor. Moreover, a single-frequency reflectometer can be
tuned to give a much higher effective directivity at the fixed
frequency, thereby further decreasing the error,

V. APPLICATIONOF THE RELATIVEQ MEASUREMENT

We will illustrate how the single-frequency relative Q
measurement can be employed in the determination of the

dielectric loss factor.
It is well known that the dielectric loss factor can be

determined from the drop in Q factor resulting from the loss
of the sample inserted in the cavity, as [2]

“’=%ba (27)

where Q. and Q is the cavity Q before and after the sample is
loaded respectively, F is the filling factor, and e’ and e“ are the

dielectric constant and loss factor of the sample, respectively.

Equation (27) can also be expressed as

Q. =< Qo_l
.// ()FQ

(28]

It is clear that the loss factor normalized with respect to

Qo can be determined with the measurement of the relative

Q, Qo/Q. On the other hand, in fact, inmost cases, especially
in the complex sample geometry cases, the filling factor F is a

calibrated factor. Therefore, if FQo, instead of F, is calibrated,
then the absolute value of s“ can be determined through Qo/Q.
Throughout the process, neither Co nor the absolute Q need

to be determined.

VI. CONCLUSIONS

It has been proved that a Q factor can be measured at a
single frequency condition. Moreover, perturbation theory has
been applied to the measurement of the Q factor, proving
that the Q factor is directly or inversely proportional to
the input resonant resistance of a cavity when a moderate
perturbation condition is satisfied. This principle has led to the

development of the single-frequency relative Q measurement
method. In addition, the perturbation condition of invariance of
the field configuration is required strictly only for the usually
small coupling region in the cavity, which is a less stringent
condition than that required in the traditional perturbation
approach. It is found that a retuned, perttirbed resonator can

1927

yield a more accurate relative Q factor result. The experimental

data from cylindrical and coaxial cavities confirms the validity

of this method over a wide range of Q factors. An error
analysis shows a more favorable performance compared to the
bandpass method. As a relative method, the single-frequency
method can be applied to arbitrary cavities satisfying the
perturbation stipulation.
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